Abstract

Frequent episode discovery is a popular framework for mining data available as a long sequence of events. An episode is essentially a short ordered sequence of event types and the frequency of an episode is some suitable measure of how often the episode occurs in the data sequence. Recently,we proposed a new frequency measure for episodes based on the notion of non-overlapped occurrences of episodes in the event sequence, and showed that, such a definition, in addition to yielding computationally efficient algorithms, has some important theoretical properties in connecting frequent episode discovery with HMM learning. This paper presents some new algorithms for frequent episode discovery under this non-overlapped occurrences-based frequency definition. The algorithms presented here are better (by a factor of N, where N denotes the size of episodes being discovered) in terms of both time and space complexities when compared to existing methods for frequent episode discovery. We show through some simulation experiments, that our algorithms are very efficient. The new algorithms presented here have arguably the least possible orders of spaceand time complexities for the task of frequent episode discovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.