Abstract

We propose a novel, efficient approach for obtaining high-quality experimental designs for event-related functional magnetic resonance imaging (ER-fMRI), a popular brain mapping technique. Our proposed approach combines a greedy hill-climbing algorithm and a cyclic permutation method. When searching for optimal ER-fMRI designs, the proposed approach focuses only on a promising restricted class of designs with equal frequency of occurrence across stimulus types. The computational time is significantly reduced. We demonstrate that our proposed approach is very efficient compared with a recently proposed genetic algorithm approach. We also apply our approach in obtaining designs that are robust against misspecification of error correlations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.