Abstract

The surface electric field analysis of the converter valve shield system is a large-scale electrostatic field problem, which is difficult to analyse. The fast multipole boundary element method (FMBEM), which is suitable for solving large-scale problems, can accelerate the computation speed and conserve memory. However, the coefficient matrix implicitly formed by using the FMBEM is sometimes ill-conditioned, especially for large-scale problems; thus, the convergence of iteration is poor. In this paper, a fast solver is proposed to improve efficiency. First, an adaptive GMRES( m ) with variant restart parameter is adjusted for the Galerkin FMBEM. In addition, the sparse approximate inverse preconditioner is improved, and a new sparsity pattern is proposed for the multiscale problem derived from the converter valve shield system. The numerical results show that the accuracy can meet the engineering requirements compared with the finite element method. Compared with other solvers and preconditioners, the algorithm can achieve a satisfactory convergence rate and reduce the computation time. In addition, a single bridge shield system of ±160 kV converter valve is successfully analysed using the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.