Abstract

The advantage of carry free addition offered by signed-digit numbers is exploited in designing a fast adder circuit. Signed-digit numbers with radix 2 and digit set (-1,0,1), called redundant binary signed-digit (RBSD) numbers, are used in the design. Ternary logic circuits using an MOS/CMOS combination are employed. The ternary logic and RBSD number system complement each other well because one ternary bit can support one RBSD digit. This provides an advantage over using binary logic where more than one bit would be needed to support one RBSD digit. While the RBSD number system offers faster add times because of carry free addition, ternary logic offers reduced circuit complexity in terms of both transistor count and interconnections. All circuit implementations were simulated and verified for satisfactory performance using SPICE software on a SUN workstation. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.