Abstract

Scanning Laser Radar has been widely used in many military and civil areas. Usually there are relative movements between the target and the radar, so the moving target image modeling and simulation is an important research content in the field of signal processing and system design of scan-imaging laser radar. In order to improve the simulation speed and hold the accuracy of the image simulation simultaneously, a novel fast simulation algorithm is proposed in this paper. Firstly, for moving target or varying scene, an inequation that can judge the intersection relations between the pixel and target bins is obtained by deriving the projection of target motion trajectories on the image plane. Then, by utilizing the time subdivision and approximate treatments, the potential intersection relations of pixel and target bins are determined. Finally, the goal of reducing the number of intersection operations could be achieved by testing all the potential relations and finding which of them is real intersection. To test the method’s performance, we perform computer simulations of both the new proposed algorithm and a literature’s algorithm for six targets. The simulation results show that the two algorithm yield the same imaging result, whereas the number of intersection operations of former is equivalent to only 1% of the latter, and the calculation efficiency increases a hundredfold. The novel simulation acceleration idea can be applied extensively in other more complex application environments and provide equally acceleration effect. It is very suitable for the case to produce a great large number of laser radar images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call