Abstract

This paper proposes a kind of fast image encryption algorithm based on permutation and diffusion architecture. An improved 1D chaotic map with three control parameters is adopted to enlarge the key space. Generalized Fibonacci- Lucas transform (GFLT) is utilized to change the positions of pixels of plain image in permutation. In order to enhance the security, the round number of permutation relates to image itself and the transform kernel of GFLT is varied and depends on both the chaotic map and plain image. In diffusion stage, the bidirectional diffusion operation is adopted, which reduces the time cost comparing with general diffusion process. Meanwhile, secure hash algorithm (SHA) is used to produce external key streams, which constitute the initial values of chaotic map and the round number of permutation. Hence, our encryption has large key space to resist the brute attack and the ability of resistance of the chosen/known attack due to the improved 1D chaotic map and SHA. Experimental simulations and security analysis both demonstrate that the proposed image encryption method can enhance the security level and at the same time reduce the computation load.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call