Abstract

BackgroundFollowing increased rates of human campylobacteriosis in the late 1990's, and their apparent association with increased consumption of fresh chicken meat, a longitudinal study was conducted in Iceland to identify the means to decrease the frequency of broiler flock colonization with Campylobacter. Our objective in this study was to identify risk factors for flock colonization acting at the broiler farm level.MethodsBetween May 2001 and September 2004, pooled caecal samples were obtained from 1,425 flocks at slaughter and cultured for Campylobacter. Due to the strong seasonal variation in flock prevalence, analyses were restricted to a subset of 792 flocks raised during the four summer seasons. Flock results were collapsed to the farm level, such that the number of positive flocks and the total number of flocks raised were summed for each farm. Logistic regression models were fitted to the data using automated and manual selection methods. Variables of interest included manure management, water source and treatment, other poultry/livestock on farm, and farm size and management.ResultsThe 792 flocks raised during the summer seasons originated from 83 houses on 33 farms, and of these, 217 (27.4%) tested positive. The median number of flocks per farm was 14, and the median number of positive flocks per farm was three. Three farms did not have any positive flocks. In general, factors associated with an increased risk of Campylobacter were increasing median flock size on the farm (p ≤ 0.001), spreading manure on the farm (p = 0.004 to 0.035), and increasing the number of broiler houses on the farm (p = 0.008 to 0.038). Protective factors included the use of official (municipal) (p = 0.004 to 0.051) or official treated (p = 0.006 to 0.032) water compared to the use of non-official untreated water, storing manure on the farm (p = 0.025 to 0.029), and the presence of other domestic livestock on the farm (p = 0.004 to 0.028).ConclusionLimiting the average flock size, and limiting the number of houses built on new farms, are interventions that require investigation. Water may play a role in the transmission of Campylobacter, therefore the use of official water, and potentially, treating non-official water may reduce the risk of colonization. Manure management practices deserve further attention.

Highlights

  • Following increased rates of human campylobacteriosis in the late 1990's, and their apparent association with increased consumption of fresh chicken meat, a longitudinal study was conducted in Iceland to identify the means to decrease the frequency of broiler flock colonization with Campylobacter

  • Of the 217 positive flocks, 14 flocks were slaughtered in three catch lots with four samples per catch lot for a total of 12 samples per flock, 46 flocks were slaughtered in two catch lots with four samples per catch lot for a total of eight samples per flock, and the remaining 157 flocks were slaughtered in one catch lot with four samples per flock

  • 14 of the 217 positive flocks were positive in only one pooled sample, likely indicating early stages of flock colonization

Read more

Summary

Introduction

Following increased rates of human campylobacteriosis in the late 1990's, and their apparent association with increased consumption of fresh chicken meat, a longitudinal study was conducted in Iceland to identify the means to decrease the frequency of broiler flock colonization with Campylobacter. The prevalence of broiler flocks colonized with Campylobacter spp. varies among countries, ranging from 5% of flocks to more than 90% [8]. Once a flock is exposed, the bacteria spread rapidly through the flock, and most of the birds become colonized and remain so until slaughter [914]. Due to the difficulties in eliminating contamination of carcasses in slaughter plants, the control of Campylobacter in broiler flocks and subsequent production of birds free from colonization at slaughter is essential for preventing human cases [5,14,17,18,19]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.