Abstract
Autotomy, the self-induced loss of a body structure, occurs in every living class of echinoderms and is related to the remarkable regeneration capabilities of the group. It is particularly prevalent in brittle stars (Class Ophiuroidea). Autotomy is facilitated by mutable collagenous tissue, which undergoes nervous system-mediated changes in tensile stiffness, tensile strength, and viscosity. The previous investigations of autotomy have been based on observations of the external surface, surgical manipulation of internal structures, or data on the morphology of structures post-autotomy. We used fast phase-contrast X-ray synchrotron imaging to visualize full autotomy events in vivo in the arms of specimens of the brittle star Ophioderma brevispina. This method requires no chemical or surgical manipulation and enabled us to identify several key stages in the autotomy process. We used this methodology to observe critical changes within the internal structure of the arm as it transitions from a functional mechanical apparatus to a dysfunctional disarticulated state. This method is the first in which the full intersegmental plane of the arm can be observed during autotomy. It can be applied to visualize autotomy and motion in vivo in other brittle star taxa, as well as in other groups such as asteroids and arthropods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.