Abstract

A family of modular VLSI architectures and chip implementations of the motion-compensation full-search block-matching algorithm are described. This set of application-specific integrated circuits is motivated by the intensive computations required to perform motion compensation in real time. The architectures are based on data-flow designs, which allow sequential inputs but perform parallel processing with 100% efficiency. On the basis of these architectures, a programmable chip can be designed for motion vector estimation with different block sizes. The chips can be cascaded for a larger tracking range or for a video source with a higher pixel sampling rate. A chip-pair design is also derived for calculating fractional motion vectors with quarter-pel precision. The chip-pair design has been laid out, and the chip characteristics are given. Test circuitry is also included to increase the testability of the chips. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.