Abstract
Bartonella species are fastidious, Gram-negative human pathogens that can persist in the host bloodstream for years and bind to and invade several types of host cells. For many pathogens, adhesion to host cells and extracellular matrix (ECM) components is a critical virulence determinant. Bacteria often vary expression of surface adhesins by phase or antigenic variation to subvert the host immune response and permit adaptive interaction with different host structures. We developed a macaque animal model for Bartonella quintana infection to detect changes in bacterial outer-membrane proteins (OMP) during prolonged bloodstream infection. We identified a gene family encoding four highly conserved, 100-kDa, variably expressed OMP (Vomp), two of which function as adhesins. The variable expression of Vomp family members appears to be mediated by deletion of one or more vomp genes during chronic bloodstream infection. vomp deletion was observed also in isolates from humans with chronic B. quintana infection. The Vomp are closely related to the afimbrial adhesin, YadA, a virulence factor of Yersinia enterocolitica. The surface-expressed Vomp contain conserved structural features of YadA, including collagen-binding motifs. We demonstrate that the B. quintana Vomp are multifunctional OMP involved in binding to collagen and autoaggregation: VompC confers the ability to bind collagen IV, and VompA is necessary and sufficient for autoaggregation. The B. quintana Vomp are members of the newly recognized family of YadA-like trimeric autotransporters; the Vomp constitute a multigene family, they are variably expressed, and different virulence properties are attributable to individual Vomp family members.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.