Abstract

We prove a family of sharp multilinear integral inequalities on real spheres involving functions that possess some symmetries that can be described by annihilation by certain sets of vector fields. The Lebesgue exponents involved are seen to be related to the combinatorics of such sets of vector fields. Moreover, we derive some Euclidean Brascamp–Lieb inequalities localized to a ball of radius R, with a blow-up factor of type , where the exponent is related to the aforementioned Lebesgue exponents, and prove that in some cases δ is optimal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.