Abstract

A family of simple derivative-free multipoint iterative methods, based on the interpolating polynomials, for solving nonlinear equations is presented. It is shown that the presented n-point iterative method has the convergence order 2 n 1 with n function evaluations per iteration. It is an optimal iterative method in the sense of the Kung-Traub’s conjecture. Numerical examples are included to support the result of theoretical convergence analysis and demonstrate eciency of the proposed method. Mathematics Subject Classication: 65H05

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.