Abstract

For the case where at least two sets have an odd number of variables we do not have the exact distribution of the generalized Wilks Lambda statistic in a manageable form, adequate for manipulation. In this article, we develop a family of very accurate near-exact distributions for this statistic for the case where two or three sets have an odd number of variables. We first express the exact characteristic function of the logarithm of the statistic in the form of the characteristic function of an infinite mixture of Generalized Integer Gamma distributions. Then, based on truncations of this exact characteristic function, we obtain a family of near-exact distributions, which, by construction, match the first two exact moments. These near-exact distributions display an asymptotic behaviour for increasing number of variables involved. The corresponding cumulative distribution functions are obtained in a concise and manageable form, relatively easy to implement computationally, allowing for the computation of virtually exact quantiles. We undertake a comparative study for small sample sizes, using two proximity measures based on the Berry-Esseen bounds, to assess the performance of the near-exact distributions for different numbers of sets of variables and different numbers of variables in each set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.