Abstract

Explicit numerical methods for spatial derivation, filtering and time integration are proposed. They are developed with the aim of computing flow and noise with high accuracy and fidelity. All the methods are constructed in the same way by minimizing the dispersion and the dissipation errors in the wavenumber space up to kΔ x=π/2 corresponding to four points per wavelength. They are shown to be more accurate, and also more efficient numerically, than most of the standard explicit high-order methods, for uniform and slowly non-uniform grids. Two problems involving long-range sound propagation are resolved to illustrate their respective precisions. Remarks about their practical applications are then made, especially about the connection with the boundary conditions. Finally, their relevance for the simulation of turbulent flows is emphasized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.