Abstract

Over the last decade a significant number of studies have highlighted the central role of host antimicrobial (or defence) peptides in modulating the response of innate immune cells to pathogen-associated ligands. In humans, the most widely studied antimicrobial peptide is LL-37, a 37-residue peptide containing an amphipathic helix that is released via proteolytic cleavage of the precursor protein CAP18. Owing to its ability to protect against lethal endotoxaemia and clinically-relevant bacterial infections, LL-37 and its derivatives are seen as attractive candidates for anti-sepsis therapies. We have identified a novel family of molecules secreted by parasitic helminths (helminth defence molecules; HDMs) that exhibit similar biochemical and functional characteristics to human defence peptides, particularly CAP18. The HDM secreted by Fasciola hepatica (FhHDM-1) adopts a predominantly α-helical structure in solution. Processing of FhHDM-1 by F. hepatica cathepsin L1 releases a 34-residue C-terminal fragment containing a conserved amphipathic helix. This is analogous to the proteolytic processing of CAP18 to release LL-37, which modulates innate cell activation by classical toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS). We show that full-length recombinant FhHDM-1 and a peptide analogue of the amphipathic C-terminus bind directly to LPS in a concentration-dependent manner, reducing its interaction with both LPS-binding protein (LBP) and the surface of macrophages. Furthermore, FhHDM-1 and the amphipathic C-terminal peptide protect mice against LPS-induced inflammation by significantly reducing the release of inflammatory mediators from macrophages. We propose that HDMs, by mimicking the function of host defence peptides, represent a novel family of innate cell modulators with therapeutic potential in anti-sepsis treatments and prevention of inflammation.

Highlights

  • The detection of microbial invasion by cells of the innate immune response occurs via receptor recognition of specific microbial molecular patterns, such as the Gram-negative lipopolysaccharide (LPS) endotoxin

  • We have identified a novel family of molecules secreted by medically-important helminth pathogens that exhibit striking structural, biochemical and functional similarities to host defence peptides, including LL-37

  • helminth defence molecules (HDMs) bind LPS preventing the activation of macrophages and the release of pro-inflammatory mediators that can cause sepsis

Read more

Summary

Introduction

The detection of microbial invasion by cells of the innate immune response (macrophages and dendritic cells; DCs) occurs via receptor recognition of specific microbial molecular patterns (pathogen-associated molecular patterns; PAMPS), such as the Gram-negative lipopolysaccharide (LPS) endotoxin. Interaction between cell receptors and bacterial PAMPS drives the early immune response and leads to maturation of anti-microbial responses manifested in the production of potent pro-inflammatory cytokines such as IL-6, IL-12 and TNF [1]. While the production of these cytokines, together with up-regulation of costimulatory molecules on DCs, macrophages, granulocytes and mast cells, is a critical step in the development of appropriate protective adaptive immune responses, an excessive inflammatory response can lead to sepsis, septic shock and death [2,3]. Human defence peptides are potent signalling molecules released by cells of the innate immune system in response to cellular stimulation by microbes and pro-inflammatory mediators [4]. Defence peptides have been shown to suppress LPS-mediated responses [3,8], promote phagocytosis while inhibiting oxidant responses of neutrophils or monocytes [9,10], and inhibit proinflammatory cytokine secretion by macrophages in the presence of bacteria or other non-specific inflammatory stimuli [6,10]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call