Abstract

Processor (vertex) faults and link (edge) faults may happen when a network is used, and it is meaningful to consider networks (graphs) with faulty processors and/or links. A k-regular Hamiltonian and Hamiltonian connected graph G is optimal fault-tolerant Hamiltonian and Hamiltonian connected if G remains Hamiltonian after removing at most k?2 vertices and/or edges and remains Hamiltonian connected after removing at most k?3 vertices and/or edges. In this paper, we investigate in constructing optimal fault-tolerant Hamiltonian and optimal fault-tolerant Hamiltonian connected graphs. Therefore, some of the generalized hypercubes, twisted-cubes, crossed-cubes, and Mobius cubes are optimal fault-tolerant Hamiltonian and optimal fault-tolerant Hamiltonian connected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.