Abstract

We derive a family of fourth-order finite difference schemes on the rotated grid for the two-dimensional convection–diffusion equation with variable coefficients. In the case of constant convection coefficients, we present an analytic bound on the spectral radius of the line Jacobi’s iteration matrix in terms of the cell Reynolds numbers. Our analysis and numerical experiments show that the proposed schemes are stable and produce highly accurate solutions. Classical iterative methods with these schemes are convergent with large values of the convection coefficients. We also compare the fourth-order schemes with the nine point scheme obtained from the second-order central difference scheme after one step of cyclic reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.