Abstract

We obtain a new parametric class of exact solutions of Einstein–Maxwell field equations which are well behaved. We present a charged super-dense star model after prescribing particular forms of the metric potential and electric intensity. The metric describing the super dense stars joins smoothly with the Reissner–Nordstrom metric at the pressure free boundary. The electric density assumed is \(\frac{E^{2}}{c_{1}} = \frac{Kx}{2}(1 + x)^{n}(1 + 6x)^{\frac{2}{3}}\) where n may take the values 0,1,2,3,4 and so on and K is a positive constant. For n=0,1 we rediscover the solutions by Gupta and Maurya (Astrophys. Space Sci. 334(1):155, 2011) and Fuloria et al. (J. Math. 2:1156, 2011) respectively. The solution for n=2 have been discussed extensively keeping in view of well behaved nature of the charged solution of Einstein–Maxwell field equations. The solution for n=3 and n=4 can be also studied likewise. In absence of the charge we are left behind with the regular and well behaved fifth model of Durgapal (J. Phys. A 15:2637, 1982). The outmarch of pressure, density, pressure-density ratio and the velocity of sound is monotonically decreasing, however, the electric intensity is monotonically increasing in nature. For this class of solutions the mass of a star is maximized with all degree of suitability, compatible with Neutron stars and Pulsars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call