Abstract

Bacterial phytopathogens employ a type III secretion system to deliver effector proteins into the plant cell to suppress defense pathways; however, the molecular mechanisms and subcellular localization strategies that drive effector function largely remain a mystery. Here, we demonstrate that the plant plasma membrane is the primary site for subcellular localization of the Pseudomonas syringae effector AvrPphB and five additional cysteine protease family members. AvrPphB and two AvrPphB-like effectors, ORF4 and NopT, autoproteolytically process following delivery into the plant cell to expose embedded sites for fatty acylation. Host-dependent lipidation of these three effectors directs plasma membrane localization and is required for the avirulence activity of AvrPphB. Surprisingly, the AvrPphB-like effectors RipT, HopC1, and HopN1 utilize an acylation-independent mechanism to localize to the cellular plasma membrane. Although some AvrPphB-like effectors employ acylation-independent localization strategies, others hijack the eukaryotic lipidation machinery to ensure plasma membrane localization, illustrating the diverse tactics employed by type III effectors to target specific subcellular compartments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.