Abstract

Biochemical, genetic, and animal studies in recent years have established a critical role for the adipokine Acrp30/adiponectin in controlling whole-body metabolism, particularly by enhancing insulin sensitivity in muscle and liver, and by increasing fatty acid oxidation in muscle. We describe a widely expressed and highly conserved family of adiponectin paralogs designated as C1q/tumor necrosis factor-alpha-related proteins (CTRPs) 1-7. In the present study, we focus on mCTRP2, the mouse paralog most similar to adiponectin. At nanomolar concentrations, bacterially produced mCTRP2 rapidly induced phosphorylation of AMP-activated protein kinase, acetyl-CoA carboxylase, and mitogen-activated protein kinase in C2C12 myotubes, which resulted in increased glycogen accumulation and fatty acid oxidation. The discovery of a family of adiponectin paralogs has implications for understanding the control of energy homeostasis and could provide new targets for pharmacologic intervention in metabolic diseases such as diabetes and obesity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.