Abstract

In this work, a family of piecewise chaotic maps is proposed. This family of maps is parameterized by the nonlinear functions used for each piece of the mapping, which can be either symmetric or non-symmetric. Applying a constraint on the shape of each piece, the generated maps have no equilibria and can showcase chaotic behavior. This family thus belongs to the category of systems with hidden attractors. Numerous examples of chaotic maps are provided, showcasing fractal-like, symmetrical patterns at the interchange between chaotic and non-chaotic behavior. Moreover, the application of the proposed maps to a pseudorandom bit generator is successfully performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.