Abstract

BackgroundA total of 453 laboratory-confirmed cases infected with avian influenza A (H7N9) virus (including 175 deaths) have been reported till October 2,2014, of which 30.68% (139/453) of the cases were identified from Zhejiang Province. We describe the largest reported cluster of virologically confirmed H7N9 cases, comprised by a fatal Index case and two mild secondary cases.MethodsA retrospective investigation was conducted in January of 2014. Three confirmed cases, their close contacts, and relevant environments samples were tested by real-time reverse transcriptase-polymerase chain reaction (RT-PCR), viral culture, and sequencing. Serum samples were tested by haemagglutination inhibition (HI) assay.ResultsThe Index case, a 49-year-old farmer with type II diabetes, who lived with his daughter (Case 2, aged 24) and wife (Case 3, aged 43) and his son-in-law (H7N9 negative). The Index case and Case 3 worked daily in a live bird market. Onset of illness in Index case occurred in January 13, 2014 and subsequently, he died of multi-organ failure on January 20. Case 2 presented with mild symptoms on January 20 following frequent unprotected bed-side care of the Index case between January 14 to 19, and exposed to live bird market on January 17. Case 3 became unwell on January 23 after providing bedside care to the Index case on January 17 to 18, and following the contact with Case 2 during January 21 to 22 at the funeral of the Index case. The two secondary cases were discharged on February 2 and 5 separately after early treatment with antiviral medication. Four virus strains were isolated and genome analyses showed 99.6 ~100% genetic homology, with two amino mutations (V192I in NS and V280A in NP). 42% (11/26) of environmental samples collected in January were H7N9 positive. Twenty-five close contacts remained well and were negative for H7N9 infection by RT-PCR and HI assay.ConclusionsIn the present study, the Index case was infected from a live bird market while the two secondary cases were infected by the Index case during unprotected exposure. This family cluster is, therefore, compatible with non-sustained person-to-person transmission of avian influenza A/H7N9.Electronic supplementary materialThe online version of this article (doi:10.1186/s12879-014-0698-6) contains supplementary material, which is available to authorized users.

Highlights

  • A total of 453 laboratory-confirmed cases infected with avian influenza A (H7N9) virus have been reported till October 2,2014, of which 30.68% (139/453) of the cases were identified from Zhejiang Province

  • Once the H7N9 virus infection was confirmed, the patient was transferred from hospital C1 to D1 immediately

  • The efficacy of neuraminidase inhibitors (NAIs) in reducing the risk of mild influenza infection progressed to severe illness has not been fully assessed in randomized controlled trials; observational data suggest that early treatment with NAIs of hospitalized patients with influenza infection is associated with better outcomes [23]

Read more

Summary

Introduction

A total of 453 laboratory-confirmed cases infected with avian influenza A (H7N9) virus (including 175 deaths) have been reported till October 2,2014, of which 30.68% (139/453) of the cases were identified from Zhejiang Province. Compared to other subtypes of avian influenza virus, H7N9 virus show increased binding affinity to mammalian-type receptors, and their amount grow up rapidly at the temperatures that are close to the normal body temperature in mammals ( it is lower than that of birds) They possess PB2 gene mutations that are associated with adaptation to mammals [10,11,12]. Ferret and mouse models confirm that strains isolated from humans could replicate efficiently in both mammalian and human airway cells, with efficient transmissibility by direct contact and modest transmissibility by respiratory droplets [14,15] Given these signatures of partial adaptation to mammals, it is imperative to closely monitor and investigate all clusters of human H7N9 virus to determine the transmissibility and severity of virus infection, as well as its potential host and pathogen determinants

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.