Abstract
Falls are dangerous among the elderly population and are a major health concern. Many investigators have reported the use of accelerometers for fall detection. In addition, the use of miniature gyroscopes has also been reported to be able to detect falls, but the effects of sensor placement on the back of a person have not been studied thoroughly. In this paper we present a simple solution for effective fall detection using both an accelerometer and two gyroscopes placed, as a single unit, on three different positions along the thoracic vertebrae (i.e., T-4, T-7, and T-10). Results indicated that T-10 was not a good location for the gyroscope placement for fall detection. However, both T-4 and T-7 were suitable, with the results for T-4 being slightly better. Using a simple rule-based multi-thresholds algorithm that utilizes the recorded resultant gravitational acceleration, angular change, angular velocity, and angular acceleration, we were able to successfully detect all 60 falls and differentiate between falls and activities of daily living (ADL) with no false positives on young volunteers. More testing data is needed, especially for backward falls, to test the robustness of our simple algorithm and to improve the sensor portability for future trial studies on geriatric populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.