Abstract

SUMMARYWireless sensor networks consist of a large number of wireless sensor nodes that organize themselves into multihop radio networks. With different link quality, different distance to the sink, nodes in a network are not treated equally, especially in a network with high traffic. In this paper, we propose a fairness adaptive time division multiple access scheduling algorithm (FATS) considering the fairness of network resource allocation. This algorithm, combining several heuristic algorithms, can assign network resources to the nodes to lead to maximizing the minimum end‐to‐end packet delivery success ratio. Because the wireless link is usually time‐varying, this algorithm can also assign the time slots to the nodes adaptively and energy‐efficiently according to the variation of link quality. We define several criteria for the slot assignment and adjustment. The change in slot assignment can be finished quickly during normal packet transmission, which causes little affect to the network. Meanwhile, considering the required data rate, FATS can achieve the maximum transmission capacity of the network with specified static or dynamic reliability. The simulation results show that the FATS can significantly reduce the difference of the end‐to‐end packet delivery ratio, track the variation of link quality quickly, and achieve the fairness of resource allocation.Copyright © 2012 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.