Abstract
In this paper we present a combinatorial generalization of the fact that the number of plane partitions that fit in a $2a\times b\times b$ box is equal to the number of such plane partitions that are symmetric, times the number of such plane partitions for which the transpose is the same as the complement. We use the equivalent phrasing of this identity in terms of symmetry classes of lozenge tilings of a hexagon on the triangular lattice. Our generalization consists of allowing the hexagon have certain symmetrically placed holes along its horizontal symmetry axis. The special case when there are no holes can be viewed as a new, simpler proof of the enumeration of symmetric plane partitions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.