Abstract

Rapid transcriptional induction of genes in response to gamma interferon (IFN-gamma) is mediated by the IFN-gamma activation site (GAS) and its cognate protein, the IFN-gamma activation factor (GAF). We describe a GAS-associated, differentiation-induced factor (DIF) as a potential molecular link between the activities of IFN-gamma and of growth and differentiation factors. DIF DNA binding was activated by colony-stimulating factor 1 in murine macrophages and also during tetradecanoyl phorbol acetate-induced differentiation or IFN-gamma treatment in myeloid U937 cells. IFN-gamma activation of DIF decreased significantly upon monocytic differentiation. DIF binding to DNA was inhibited by antiphosphotyrosine antibodies and could be induced by treatment of U937 cells with vanadate. Unlike GAF, DIF-DNA complexes did not contain the 91-kDa protein (p91) from ISGF-3. DIF bound with high affinity to GAS from the promoters of the IFP 53/tryptophanyl-tRNA synthetase and Fc gamma RI genes, intermediate affinity to the Ly6A/E GAS, and low affinity to the guanylate-binding protein GAS. DIF may belong to a family of cytokine- or growth factor-induced factors binding with variable affinities to GAS-related elements: the interleukin-6-responsive acute-phase response factor associated with GAS from different IFN-inducible promoters but with a different preference of binding compared with DIF. The sis-inducible element of the c-fos promoter bound GAF but not DIF. However, the sis-inducible element could be changed by point mutation to compete for GAF and DIF binding. Our data show DIF to be a novel DNA-binding protein which is activated in response to differentiating signals. Moreover, they suggest that a family of cytokine- or growth factor-regulated proteins integrates and coordinates the responses to cytokines and to growth and differentiation factors by binding to GAS-related elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.