Abstract

This paper uses the factor augmented regression framework to analyze the relation between bond excess returns and the macro economy. Using a panel of 131 monthly macroeconomic time series for the sample 1964:1-2007:12, we estimate 8 static factors by the method of asymptotic principal components. We also use Gibb sampling to estimate dynamic factors from the 131 series reorganized into 8 blocks. Regardless of how the factors are estimated, macroeconomic factors are found to have statistically significant predictive power for excess bond returns. We show how a bias correction to the parameter estimates of factor augmented regressions can be obtained. This bias is numerically trivial in our application. The predictive power of real activity for excess bond returns is robust even after accounting for finite sample inference problems. Forecasts of excess bond returns (or bond risk premia) are countercyclical. This implies that investors are compensated for risks associated with recessions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.