Abstract

We report on the design, installation, and test of an experimental facility for the production of ultra-cold atomic isotopes and isomers of cesium. The setup covers a broad span of mass numbers and nuclear isomers, allowing one to directly compare chains of isotopes and isotope/isomer pairs. Cesium nuclei are produced by fission or fusion-evaporation reactions using primary proton beams from a 130 MeV cyclotron impinging upon a suitable target. The species of interest is ejected from the target in ionic form, electrostatically accelerated, mass separated, and routed to a science chamber. Here, ions are neutralized by implantation in a thin foil, and extracted by thermal diffusion. A neutral vapor at room temperature is thus formed and trapped in a magneto-optical trap. Real-time fluorescence imaging and destructive absorption imaging provide information on the number of trapped atoms, their density, and their temperature. Tests with a dedicated beam of 133Cs+ ions at 30 KeV energy confirm neutralization, evaporation, and laser cooling to 150 μK, with an average atomic density of 1010 cm−3. Availability of cold and dense atomic samples of Cs isotopes and isomers opens new avenues for high-precision measurements of isotopic and isomeric shifts thereby gaining deeper insight into the nuclear structure, as well as for sensitive measurements of isotopes’ concentration ratios in trace quantities. The facility also constitutes the core for future experiments of many-body physics with nuclear isomers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.