Abstract

The novel cubic cage Ag@AgBr plasmonic photocatalysts were first synthesized via a water soluble sacrificial salt-crystal-template (SCT) process. This is achieved by the photo-reduction process was used to produce Ag nanoparticles on the surface of AgBr. The physical and photophysical properties of the as-prepared Ag@AgBr cubic cages were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), energy dispersive spectroscopy (EDS), ultraviolet–visible diffuse reflection spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR) and photoluminescence spectroscopy (PL). The results showed that Ag@AgBr cubic cages have excellent photocatalytic performance under visible light illumination, since the methyl orange (MO) dyes were completely degraded within 80s over Ag@AgBr photocatalysts and the photocatalytic activity maintains a high level after 7 cycles. A possible catalytic mechanism for Ag@AgBr cubic cages is proposed which is attributed to the surface plasmon resonance (SPR) effect from Ag and hybrid effect from AgBr.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.