Abstract

The efficiency of the water electrolysis process is restricted by the sluggish kinetics of the oxygen evolution reaction (OER). Developing efficient catalysts and their synthesis methods is highly desired to improve the kinetics of the OER and therefore the overall efficiency of the water electrolysis. In this report, we present a facile wet-chemical method for synthesizing IrO2 and RuO2 nanoparticles (NPs) for the OER. The nanoparticles were synthesized by reducing metal chlorides in ethylene glycol in the presence of polyvinylpyrrolidone, followed by annealing in air. The particle size was controlled by adjusting the annealing temperature. The activity of IrO2 and RuO2 NPs supported on carbon black was investigated by cyclic voltammetry (CV) in alkaline (0.1 M KOH) electrolyte. As-synthesized IrO2 and RuO2 NPs showed high OER activity. The IrO2 NPs exhibited a specific activity of up to 3.5 (±1.6) μA/cm2 oxide at 1.53 V (vs. RHE), while the RuO2 NPs achieved a value of 124.2 (±8) μA/cm2 oxide. Moreover, RuO2 NPs showed a mass activity for OER, up to 102.6 (±10.5) A/goxide at 1.53 V (vs. RHE), which represents the highest value reported in the literature to date.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call