Abstract

Recently, a convenient melt-infiltration method, using a hydrated metal salt with porous support, was developed to prepare various metal/metal-oxide nanocatalysts. Until now, millimeter-scale, bead-shaped, cobalt egg-shell catalysts have been used to enhance the rate of reactant diffusion and catalyst performance. In the present work, new SiO2@Co/mSiO2 egg-shell nanoreactors (~300 nm) were synthesized with controlled Co content of 10 and 20 wt%. This was accomplished using a selective melt-infiltration process with porous silica shells around solid-silica cores. The SiO2@Co(10 wt%)/mSiO2 egg-shell catalyst that bears small cobalt nanoparticles of -2 nm was successfully employed for the industrially valuable Fischer-Tropsch synthesis reaction, showing the high activity of -8.0 x 10(-5) mol(CO) x gCo(-1) x S(-1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call