Abstract

Small-grained elemental sulfur is precipitated from sodium thiosulfate (Na2 S2 O3 ) in a carbon-containing oxalic acid (HOOC-COOH) solution through a novel spray precipitation method. Surface area analysis, elemental mapping, and transmission electron micrographs revealed that the spray-precipitated sulfur particles feature 11 times higher surface area compared to conventional precipitated sulfur, with homogeneous distribution in the carbon. Moreover, the scanning electron micrographs show that these high-surface-area sulfur particles are firmly adhered to and covered by carbon. This precipitated S-C composite exhibits high discharge capacity with about 75 % capacity retention. The initial discharge capacity was further improved to 1444 mA h g(-1) by inserting a free-standing single-walled carbon nanotube layer in between the cathode and the separator. Moreover, with the help of the fixed capacity charging technique, 91.6 % capacity retention was achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.