Abstract

Antimony-doped tin oxide (ATO) coated TiO2 (TiO2@ATO) conductive composites were synthesized by a sol–gel method using acetylacetone as the chelating agent in water based. As-synthesized samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electronic microscopy and high-resolution transmission electron microscopy, thermogravimetric analysis, ultraviolet–visible (UV–Vis) spectroscopy and Fourier transform infrared spectroscopy. The results showed that the optical band gap gradually decreases from 3.081 eV to 3.068 eV with the increase of antimony doping concentration. The optimal molar ratio of acetylacetone to metal ions was 4 while the water content was 50 mL. When the antimony doping concentration was 35 mol%, TiO2@ATO composite possessed the lowest resistivity of 4.5 Ω cm. ATO nanoparticles with an average particle size of 8.3 nm formed a shell of about 10 nm on the surface of TiO2. In addition, the corresponding formation mechanism of TiO2@ATO composite was proposed on the basis of the experimental analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.