Abstract
Deuterium-labeled biologically active compounds are gaining importance because they can be utilized as tracers or surrogate compounds to understand the mechanism of action, absorption, distribution, metabolism, and excretion. Deuterated drug molecules (heavy drugs) become novel as well as popular because of better stability and bioavailability compared with their hydrogen analogs. Labeling of organic molecules with deuterium at specific positions is thus gaining popularity. In this work, we have exploited a highly regioselective and enantioselective direct Michael addition of methyl-d3 alkyl ketones to dimethyl(phenyl)silylmethylene malonate that was catalyzed by (S)-N-(2-pyrrolidinylmethyl)pyrrolidine/trifluoroacetic acid/ D2 O combination with high yield and isotopic purity. The 5,5-dideutero-4-dimethyl(phenyl)silyl-6-undecyl-tetrahydropyran-2-one was obtained from the adduct of methyl-d3 undecanyl ketone and dimethyl(phenyl)silylmethylene malonate by a silicon controlled diastereoselective ketone reduction, lactonization, and deethoxycarbonylation. The dideuterated silylated tetrahydropyran-2-one is the precursor for geminal (2) H2 -labeled (+)-4-hydroxy-6-undecyl-tetrahydropyran-2-one, an advanced intermediate for gem-dideutero (-)-tetrahydrolipstatin and (+)-δ-hexadecanolide syntheses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of labelled compounds & radiopharmaceuticals
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.