Abstract

BackgroundThiazoles and 1,3,4-thiadiazoles have been reported to possess various pharmacological activities.ResultsA novel series of thiazoles carrying 1,3,4-thiadiazole core were designed and prepared via the reaction of the 2-(4-methyl-2-phenylthiazole-5-carbonyl)-N-phenylhydrazinecarbo-thioamide with the appropriate hydrazonoyl chlorides. The structures of the newly synthesized compounds were confirmed based on elemental and spectral analysis as well as their alternative syntheses. The cytotoxic potency of the newly synthesized thiadiazoles was evaluated by their growth inhibitory potency in liver HepG2 cancer cell line. Also, the structure activity relationship was studied.ConclusionsAll the newly synthesized compounds were evaluated for their anticancer activity against liver carcinoma cell line (HepG2) using MTT assay. The results revealed that the compounds 12d, 12c, 6g, 18b, 6c, and 6f (IC50 = 0.82, 0.91, 1.06, 1.25, 1.29 and 1.88 µM, respectively) had good antitumor activity against liver carcinoma cell line (HepG2) when compared with the standard drug Doxorubicin (IC50 = 0.72 µM).Graphical abstractA facile synthesis and anticancer activity of some novel thiazoles carrying 1,3,4-thiadiazole moiety.

Highlights

  • Thiazoles and 1,3,4-thiadiazoles have been reported to possess various pharmacological activities

  • As a part of our research projects to synthesize new bioactive compounds [26–34], we intended in this research to synthesize a new series of thiazoles carrying 1,3,4-thiadiazole moiety in order to study their anticancer activity against liver carcinoma cell line (HepG2)

  • The presence of the thioamide hydrazine moiety as a side chain in compound 3 prompted us to utilize it for constructing 1,3,4-thiadiazole ring through its reaction with many hydrazonoyl chlorides

Read more

Summary

Results

A novel series of thiazoles carrying 1,3,4-thiadiazole core were designed and prepared via the reaction of the 2-(4-methyl-2-phenylthiazole-5-carbonyl)-N-phenylhydrazinecarbo-thioamide with the appropriate hydrazonoyl chlorides. The structures of the newly synthesized compounds were confirmed based on elemental and spectral analysis as well as their alternative syntheses. The cytotoxic potency of the newly synthesized thiadiazoles was evaluated by their growth inhibitory potency in liver HepG2 cancer cell line.

Conclusions
Background
Results and discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call