Abstract

Two conjugated polymers based on benzo[1,2-b:4,5-b′]dithiophene (BDT) with triethylene glycol (TEG) and ethylhexyl side chains (abbreviated as PBDTT-TEG and PBDTT-EH, respectively) were designed and synthesized. A polymer field-effect transistor of PBDTT-TEG exhibited a charge carrier mobility nearly one order of magnitude higher than that of PBDTT-EH. Measurements on polymer solar cells (PSCs) based on polymer:[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) binary blends showed the PBDTT-TEG-based devices had higher short-circuit current density (Jsc) than PBDTT-EH. The effect of the incorporation of PBDTT-TEG into PBDTT-EH on the photovoltaic properties has been investigated by blending them together with different ratios. The optimization of the devices showed an obvious increase in fill factor (FF) values and an improvement in efficiency compared with their binary ones, which is ascribed to a higher charge mobility and higher crystallinity of PBDTT-TEG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.