Abstract

Post-polymerization modification (PPM) offers a versatile approach for engineering multifunctional polymers, but this advantage has not been fully exploited to fabricate multifunctional liquid crystal polymers (LCPs). Here, we design a facile synthetic approach towards multifunctional LCP by combining the ring-opening metathesis polymerization (ROMP) with PPM, in which ROMP helps to prepare a reactive LCP precursor with high molecular weight, and PPM provides a facilitation to introduce functional groups into the precursor. Consequently, a photo- and humidity-responsive linear LCP (LLCP) is demonstrated to show the potential of this synthetic strategy to diversify functions of the LCPs. Under light irradiation and humidity changes, the deformation modes of the LLCP films are converted to complex shapes (bending, twisting, and curling). The obtained dual-responsive LLCP with high molecular weight possesses excellent processability and recyclability, making it possible to construct 3D shape actuators with programmable deformation behaviors under light/humidity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.