Abstract

Dual-band light absorption with the maximal absorptivity up to 99.7% and the minimal spectral bandwidth down to 3 nm is obtained in the plasmonic absorbers consisting of triple-layer plasmonic crystal-nonlinear medium cavity-metal substrate structure, where the intercalated dielectric material is chosen to be a Kerr medium cavity. Efficient all-optical controlling with high spectral intensity change ratios and detecting signal-to-noise is achieved for the system after a slight increase of pumping intensity. These impressive results mainly result from the strong plasmonic resonant field confinement in the middle nonlinear Kerr medium cavity and the near-perfect relative intensity change response by the ultra-sharp anti-reflection spectrum. This work can lay a foundation for advanced all-optical devices by exploiting light perfect absorption behavior and resonant optical field enhancement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call