Abstract

Prebiotic molecules have often been identified in the interstellar medium and meteorite samples. However, we still have only a fragmentary knowledge of the mechanism of the evolutionary process of these prebiotic molecules. With the aid of state-of-the-art vacuum ultraviolet (VUV)-infrared (IR) spectroscopy and ab initio calculations, we reveal a new pathway leading to the formation of the biorelevant molecules carrying amine groups or peptide bonds via the single-photon ionization induced Michael/cyclization reaction of acrylonitrile (AN)-alcohol heterodimer complexes in the gas phase. In the reactions, not only N-H nitrilium cations with H+-N≡C-R Lewis structure but also cyclic amine cations with a peptide bond can be formed when the AN reacts with alcohols of increasing molecular size (such as ethanol, propanol, or butanol). This study suggests the possibility of unsaturated nitriles being reduced by ionized alcohols in space, which can further drive sequential Michael addition/cyclization reactions to form more complex biorelevant molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.