Abstract

To overcome the separation difficulty of the palladium-based homogeneous catalyst, the palladium complex can be anchored on various supports such as silica, polymers and nanoparticles. For the same purpose, we describe a general and facile method to immobilize palladium bis(phosphine) complexes on the basis of the technique widely used for metal-organic framework (MOF) synthesis, yielding a mesoporous coordination polymer palladium-CP1. Although palladium complexes are generally not stable enough to allow further manipulation, we succeeded in preparation of a palladium coordination polymer without by-product Pd clusters or nanoparticles. The fresh palladium-CP1 catalyst exhibits a yield close to 55% for tolane at room temperature and 24 h in Sonogashira coupling of iodobenzene and phenylacetylene, as compared with a yield of 89% for its homogeneous counterpart [Pd(PPh(3))(2)Cl(2)]. Furthermore, this catalyst is stable enough to be reused more than four times with no Pd and Zn leaching. Therefore this new immobilization method offers great promise for the produce of recyclable palladium heterogeneous catalysts with higher activity and higher thermal and chemical stability in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.