Abstract

Iron oxide has been considered as one of the most promising anode materials due to its high theoretical capacity, low cost and environmental friendliness. However, few simple and effective method is explored for preparing iron oxides with high electrochemical performance via alleviating the volume change and agglomeration of active particles. In this work, FeOx/carbon/graphene composites are fabricated by a facile solution combustion synthesis within several minutes in one step. Characterization demonstrates that FeOx nanoparticles are well-dispersed in the graphene matrix. The presence of graphene effectively alleviates the agglomeration of FeOx nanoparticles, and accommodates the volume changes during the cycling process, thereby resulting in the excellent electrochemical performance. FeOx/carbon/graphene (31.4wt.% graphene) delivers a higher discharge capacity of 824mAhg−1 after 100 cycles at 0.4Ag−1, in comparison to the value of 301mAhg−1 for the composite without graphene. This easily prepared FeOx/carbon/graphene composite with excellent electrochemical performance can be considered as one promising anode material used for lithium-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.