Abstract

Herein, we present the facile synthesis of different content of chromium (Cr)-doped CdS quantum dots (Cr@CdS QDs) using microwave route within 15 min. The synthesized Cr@CdS QDs were investigated for structural, morphological, opto-dielectric, and electrical natures. X-ray diffraction confirms the monophasic hexagonal system of Cr@CdS and the sizes of crystallites are calculated to be 8.72, 7.04, 8.84, 6.56, 5.96, 6.52 and 6.99 nm for 0.0, 0.5, 1.0, 5.0, 10.0, 15.0, and 20.0 wt% Cr@CdS samples. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies reveal the quantum dots size spherical shape morphology of synthesized Cr@CdS samples and the size is noted in range of 8.5–8.1 nm. The lattice spacing and orientation of grown QDs was also evaluated by high-resolution TEM and Selected Area Electron Diffraction (SAED) pattern. Diffused reflectance spectra were recorded and Kubelka–Munk theory is employed to estimate the energy gap. The energy gap was estimated between 2.4 and 2.46 eV for Cr@CdS QDs. Photoluminescence (PL) emission spectra own an strong emission peak in both spectra recorded at two different excitation wavelengths and revealed that the PL emission intensity is quenched with Cr doping in CdS. Dielectric and ac electrical studies shows the dependence on frequency and Cr content doping, and constant values are enhanced from 14 to 17 at 4 MHz. The prepared Cr@CdS QDs will be highly useful as sensitizers in solar cell, spintronics, and optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.