Abstract

Here we aim to develop a facile emulsion-based method to prepare tripod gold nanoparticles (AuNPs) with high suspension stability in an aqueous environment. A gyroid-structured polymer template formed by the hydrolysis of a degradable block copolymer, polystyrene (PS)-b-poly(l-lactide), is used for the fabrication of AuNPs. Also, a successful emulsification of dichloromethane (DCM) in the aqueous phase is developed by using thiolated polyethylene glycol (PEG-SH) as the stabilizer. Subsequently, the nanohybrids of PS/Au can be fabricated by templated electroless plating, and then selectively dissolving in the DCM dispersive phase. Most interestingly, a dedicated process for the simultaneous release of the tripod AuNPs from the dissolution of PS associated with PEG-SH at the interface of the emulsion is achieved, giving PEG-SH-functionalized tripod AuNPs dispersed in the aqueous phase, which significantly improves the suspension stabilization of tripod AuNPs. The in situ temperature-programmed electrospray-differential mobility analysis provides a quantitative, statistical analysis of mobility diameter, dynamic shape factor, polydispersity, and colloidal stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call