Abstract

ABSTRACTIn this article, we report a synergistic strategy to develop dual physically cross‐linked tough hydrogels via one‐pot bulk copolymerization of N‐vinyl‐2‐pyrrolidone, acrylic acid, and stearyl methylacrylate (SMA) without any adscititious surfactant. Due to synergic effects of hydrogen bonding and hydrophobic association, the resulted dual physically cross‐linked hydrogels (DP Gel) with ultra‐wide range adjustable Young's modulus (0.08–45.6 MPa), tensile stress (0.7–6.9 MPa), and toughness (3.3–23.1 MJ m−3). Stretching to 300%, DP Gel exhibited fast recoverability that remained ~95% of initial dissipated energy after resting in 60 °C for 3 min. Finally, scanning electron microscopy revealed that the microstructure of hydrogel changed from phase separation structure to micro phase separation as SMA added, which accounted for excellent performance of DP Gel. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 1469–1474

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.