Abstract

Photochemically controlled ATRP-like polymerization is successfully used to prepare a thermoresponsive copolymer of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and di(ethylene glycol) methyl ether methacrylate (MEO2MA). The photochemically controlled method described here provides good control over the polymer structure, architecture, and properties. This photopolymerization renders polymers with narrow molecular weight distributions (Mw/Mn = 1.3) and high monomer conversions (>90%) while using a very low iridium-based catalyst concentration (25 ppm). In addition, the reaction rate of this polymerization is fast, reaching 50% monomer conversion in less than 1 h of reaction. The lower critical solution temperature (LCST) of the prepared polymer was also adjusted to be in the range of physiological temperatures, undergoing a coil-to-globule transition at 43 °C. In addition, the resulting polymer showed no cytotoxicity on four mammalian cell lines at the highest concentration tested (0.4 mg/ml), which highlights its potential use in different biomedical applications. The thermoresponsive copolymer P(MEO2MA-co-OEGMA500) was successfully prepared using a novel photopolymerization procedure. The synthesis was carried out using a user-friendly method with a few ppm of a photoredox iridium-based catalyst. Monomer conversions higher than 50% were achieved in less than 1 h of synthesis showing a faster polymerization rate when compared to the traditional Cu-based ATRP synthesis. The photochemically controlled method here described provides true control over polymer structure, architecture, and properties. Furthermore, the polymer showed no toxicity on four mammalian cell lines at the highest concentration tested (0.4 mg/ml).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call