Abstract

In this study, we present a facile and low-cost approach for detecting protein kinase A (PKA) by assembling a purpose-designed carboxyfluorescein (FAM)-labelled peptide with carboxylic carbon nanoparticles (CNPs). Fluorescence of the FAM-labelled peptide gradually decreases to a low background signal as a result of the electron transfer from CNPs to FAM-labelled peptide via the peptide, which acts as a bridge. The reaction in the sensor in the presence of adenosine 5'-triphosphate and PKA phosphorylates the substrate peptide and disrupts the electrostatic repulsive force between the CNPs and the peptide, therefore altering the spectroscopic signal of the system. The change in fluorescence signal was directly proportional to the PKA concentration in the range 0-1.8 U/ml with a detection limit of 0.04 U/ml. These results suggest that PKA activity can be effectively measured using the developed PKA biosensor. Moreover, the fluorescence biosensor was successfully used in the investigation of PKA in spiked human embryonic kidney (HEK) 293 cells lysates, indicating its potential applications in protein kinase-related biochemical fundamental research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.