Abstract

This study is aimed to develop porous poly(methyl methacrylate) (PMMA) as a potential bone substitute via a facile fabrication method. Composites consisting of water-soluble chitosan oligosaccharide (CSO) and PMMA were prepared by combining freeze-drying with radical polymerization. Open porous PMMA with controlled porosities were obtained after the CSO was extracted gradually from the composites. The CSO aqueous solutions with different concentrations were frozen and then freeze-dried to obtain interconnected porous framework. Methyl methacrylate with initiators and a crosslink agent was introduced into the porous framework and polymerized, resulting in two-continuous phase composites. The mechanical properties of the initial composites and porous materials after immersion in PBS for 8 weeks were investigated. Dynamic mechanical analysis was conducted to study the mechanical strength of the composite, compared with bulk PMMA. Porosity and morphology of porous PMMA were studied using the liquid displacement method and scanning electron microscopy, respectively. Thermogravimetric analysis indicated that composite exhibited better thermal stability than bulk PMMA. The composites became porous materials after extracting bioactive CSO component. The mechanical properties of porous materials were closer to those of cancellous bone. The generation of pores using CSO seems to be a promising method to prepare porous PMMA as a potential bone substitute.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.