Abstract

The development of ultrasensitive, reliable, and facile detection technologies for trace tetrodotoxin (TTX) is challenging. We presented a facile dual-mode aptamer-based biosensor (aptasensor) for ultrasensitive fluorescence and surface-enhanced Raman spectroscopy (SERS) detection of TTX by using gold nanoparticles (AuNPs)-embedded metal-organic framework (MOF) nanohybrids (AuNPs@MIL-101) because of their superior properties. A TTX-specific aptamer labelled with fluorescence and Raman reporter cyanine-3 (Cy3-aptamer) was selected as the recognition element and signal probe. Without immobilisation processing steps, Cy3-aptamers were effectively adsorbed onto the surface of AuNPs@MIL-101, thereby generating both fluorescence quenching and SERS enhancement. The preferential binding of TTX towards the Cy3-aptamer triggered the release of rigid Cy3-aptamer–TTX complexes from the AuNPs@MIL-101 surface, which resulted in recovered fluorescence signals and weakened SERS signals. Switched fluorescence and SERS intensities exhibited excellent linear relationships with logarithms of TTX concentrations of 0.01–300 ng/mL, and ultrahigh detection sensitivities of 6 and 8 pg/mL, respectively, were obtained. Furthermore, two quantitative detection approaches for TTX-spiked puffer fish and clam samples obtained satisfactory spiked recoveries and coefficient of variation (CV) values. Notably, the dual-mode aptasensor also successfully determined natural TTX-contaminated samples, showing excellent practical applications. The results indicated that this dual-mode measurement not only was ultrasensitive and simple but also markedly boosted analysis reliability and precision. This study is the first to propose a dual-mechanism AuNPs@MIL-101-based aptasensor for detection of trace TTX and provides a favourable pathway for developing multimode sensing platforms for various applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call