Abstract

The rapid development of internet and internet of things brings new opportunities for the expansion of intelligent sensors, and acetone as a major disease detection indicator (i.e., diabetes) making it become extremely important clinical indicator. Herein, uniform mesoporous ZnO spheres were successfully synthesized via novel formaldehyde-assisted metal-ligand crosslinking strategy. In order to adjust the pore structure of mesoporous ZnO, various mesoporous ZnO spheres were synthesized by changing weight percentage of Zn(NO3)2·6H2O to tannic acid (TA). Moreover, highly active heterojunction mesoporous ZnO/Co3O4 has been fabricated based on as-prepared ultra-small Co3O4 nanocrystals (ca. 3 nm) and mesoporous ZnO spheres by flexible impregnation technique. Profit from nano-size effect and synergistic effect of p-n heterojunction, mesoporous ZnO/Co3O4 exhibited excellent acetone sensing performance with high selectivity, superior sensitivity and responsiveness. Typically, 5 wt% Co3O4 embedded mesoporous ZnO sphere showed prominent acetone response (ca. 46 for 50 ppm), which was about 11.5 times higher than that in pure ZnO sensing device, and it was also endowed high cyclic stability. The nanocrystals embedded hybrid material is expected to be used as promising efficient material in the field of catalysis and gas sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.