Abstract

Latent fingerprint recognition technique has received increasing attention because it helps to precisely identify human information for many applications. In this study, bifunctional core-shell magnetic fluorescent microspheres have been synthesized via a facile interface Pechini-type sol-gel method using citric acid and polyethylene glycol as chelating agent and cross-linking agent, respectively. The obtained Fe3O4@YVO4:Eu3+ microspheres possess a typical core-shell structure, large magnetization, and strong fluorescence emission. The surface morphology and roughness of the microspheres can be flexibly tuned by controlling the multistep interface deposition process and subsequent calcination temperatures. Due to their well-integrated bifunctionalities, these magnetic fluorescent microspheres show outstanding performance in the visualization of latent fingerprints on various substrates with high definition and excellent anti-interference, and therefore they have great potential for application in identity recognition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call